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Abstract – NevroEkg is a computer application for analysis
of ECG and related bio-signals, such as breathing and blood
pressure. It was made in collaboration between computer
scientists, engineers and neurocardiologists. Recently, it has
been modified to also support the unconventional measure-
ments of differential ECG, made on wireless wearable gadgets.
These wearable gadgets measure ECG a bit differently - with
lower resolution, lower sampling frequency, and more noise.
These features require modified and additional processing of
the ECG signal, which is not required for standard 12-channel
ECGs. A novel algorithm is proposed to help the human oper-
ator handle beat-detection in novel ECG measurements.

I. INTRODUCTION

NevroEkg is a toolset for computer visualization and
analysis of multi-channel ECG and related bio-signal mea-
surements for neurocardiologists [1]. It was implemented
in a way that makes analysing short and noise-free mea-
surements that were made in controlled conditions rela-
tively easy and automated. Novel wearable battery-powered
gadgets that measure ECG [2] are becoming affordable
for health monitoring, and are able to produce so far un-
seen amounts of ECG data per subject. Wearable gad-
gets presents a novel means of taking ECG measurements
though, which differs from the well-established means in
many aspects, and produce different measurements. The
main characteristics of ECG measurements produced by
wearable gadgets are listed below:

• Measurements are performed in an uncontrolled en-
vironment, on subjects on their everyday lives, per-
forming their routine tasks or jobs.

• Current technology enables over 3 days of continu-
ous ECG measuring. In the future, the continuous
measurement time will likely extend for over a week
[4].

• Since the measurements are performed on active sub-
jects, they are far noisier than the measurements
made on resting subjects.

• The wearable gadgets measure single-channel ECG,
sacrificing the benefits of multi-channel measure-
ments for the benefits of simplicity and unobtrusive-
ness [5].

• Measuring ECG against the common potential is not
possible, since the wearable device only uses two
electrodes, therefore the differential ECG is mea-
sured as the difference between voltage on those two
electrodes.

• The aim for long battery life imposes limitations on
measurement precision. Relatively low sampling
frequency and low sampling resolution are usually
used on wearable gadgets, compared to modern elec-
trocardiography devices. In this work, gadget that
samples ECG with 10 bits and 125 Hz is used.

• Allowing for lossy data transmission further lowers
power requirements of the wearable gadgets and sim-
plifies their hardware and is therefore justifiable. It is
reasoned, that the sheer length of measurement more
than compensates for the small number of missing
samples.

To accommodate processing of large amount of ECG
data with the presented characteristics, new algorithms and
processing procedures were required. NevroEkg was mod-
ified to accommodate the new requirements and provide
some automatic and some semi-automatic processing of
the measurements. The semi-automated beat detection was
tested and evaluated on the Physionet MIT-BIH Arrhythmia
Database [3].

Section II describes the process of handling data and
extracting information from them. Subsections A, B and C
describe process in more detail. In section III the tests and
results of the proposed algorithm are presented. Section IV
summarises and concludes the presented work.

II. ALGORITHMS AND METHODS

Processing of measurement data is divided into three
steps: an automatic conversion of input measurement files
into a file format recognisable by NevroEKG, a semi-
automatic detection of heartbeats and a manual analysis of
the observed irregularities in heart rhythm. First two steps
must take the characteristics of the acquired data into ac-
count, to make the input to the last step – the heart rhythm
– as error-free as possible for the human operator that is
observing it. The first step comprises the analysis of the
measurement input file, i.e, the estimation of sampling fre-
quency, the missing data detection, and error detection and
handling. This is described in details in subsection IIA

Semi automatic detection helps the human operator to
quickly process long measurements containing thousands
of beats. This work is normally done manually, and to
achieve precise results this is still the preferred method.
However for long measurements, where relatively large per-
centage of beats are regular, a quick method of generalized
beat detection is a valuable addition. It is presented in sub-
section IIB

As the last step, human operator can detect grouped
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anomalies in the measurement when given an overview of
the detected beats. This step still includes human knowl-
edge and intuition. It is important to be done manually,
particularly since the subject is mobile during the measure-
ment, and automatic detection could misinterpret the nor-
mal changes in the rhythm as an anomaly. We discuss the
method of visual analysis in section IIC

A. Data converter
The collected data is encapsulated in a simple text file

format, as a stream of packets, where each packet comprises
timestamp in nanoseconds, sample counter, and sequence
of integer-valued samples with constant size. Currently all
packets contain exactly 14 samples. Text file also contains
meta information, such as the measurement start time, the
identifier of the gadget that performed measurement, the
sampling frequency, the multiplier and offset for translating
sample values, the patient-specific metadata, and user com-
ments. The NevroEKG proprietary nekg file format is able
to include all the given meta information, as well as mul-
tiple measurement channels, and multiple event channels,
which are derived from the measurement channels. Both
NevroEKG and its file format are not, however, designed to
hold information about the missing data.

The converter processing can be summed up in the fol-
lowing steps:

1. Reading of all contents of the input file into a struc-
tured form – separating timestamps, counters, sam-
ples, and metadata.

2. Checking for consistency of timestamps and coun-
ters, with automated fixing of errors that could oc-
cur during the packet transmission. Packets with non-
conformant timestamps are discarded while the devi-
ating sample counters with small errors in value (ex-
pected value differs by 1 or two) are fixed to match
expected values. Missing data is also logged at this
step.

3. Sampling frequency is estimated from the counter
samples and timestamps by weighted average of the
observed sample rates of all continuous sequences
(sequences that do not include any missing data).
Linear weighting is used that gives each sequence the
weight equal to the length of the sequence.

4. Output in nekg file format is written, using the gath-
ered metadata and samples, with the detected missing
samples assigned value 0.

5. Problems encountered in the conversion process are
also logged as a comment in the nekg file.

B. Beat detection algorithm
Algorithm is based on numerous first derivative based

QRS detectors [6], and is probably most similar to the sim-
plified QRS detection algorithm by Pan and Tompkins [7].
The algorithm is provided an input signal in a time series,
called signal channel. The proposed automated part of the
beat detection consists of the following steps.

1) Low-pass filtering
The signal channel is filtered with a low pass filter, with

a user defined cut-off frequency. This filter is implemented

with simple triangular convolution vector whose width cor-
responds to the cut-off frequency. This step removes most
of the high-frequency noise emitting from electrical ap-
pliances. This step also ensures that the missing data is
handled properly, that is, the values that are used to indi-
cate missing data are not used for calculation, and are not
smoothed out. On Fig. 1, the input signal processing is
shown with the input signal in red and the filtered signal
in blue.

2) Derivation
Filtered signal is numerically derived. During the

derivation, the algorithm again checks for missing data, and
ensures that transitions between measured and missing data
are not detected as high derivatives. The derivative of miss-
ing data is therefore set to zero, since events cannot be de-
tected in such areas. To simplify the algorithm and to ensure
that ECGs of all orientations are handled properly, absolute
value of the derivative is used for the beat detection. Thus,
there is no need for detection of ECG orientation and signal
flipping. A sample absolute value of the derivative is shown
in green on Fig. 1.

3) Amplitude analysis
Possible beat locations are then detected using ampli-

tude analysis algorithm. This algorithm searches for the ar-
eas of the derivative higher than a given threshold. Such
peaks are very likely the peaks in QRS complex, more ex-
actly on the slopes between R and S waves. The distance
between such peaks represents a close approximate to the
RRI (beat-by-beat R to R interval) value.

At this stage, all the peaks are declared heartbeats and
inserted into a newly created event channel. Event channel
contains events as ¡time, value¿ pairs. For heartbeat events,
time is defined as the absolute time since the measurement
start, and value is defined as the time passed since the pre-
vious event (RRI).

Figure 1. Three steps of the algorithm are shown: red is the input signal,
blue is the filtered signal, and green is the absolute value of the first

derivative.

4) Extreme events removal
The last stage of the algorithm prunes the extreme

events. Possible erroneously detected beats include peaks
from noisy areas, and peaks from P and T waves. Physi-
cal limitations limit the heart beat frequency, therefore, to
remove peaks that are less likely to correspond to a QRS
complex, peaks that are not within margins of normal heart
beat frequency are removed. This is done by imposing
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minimum and maximum thresholds on the value of heart-
beat events. Heartbeat events are removed if their RRI is
lower than 0.15s, or higher than 2.5s. Maximum thresh-
old thus removes the correctly detected heartbeat events,
which occur after long intervals of inactivity in the signal,
but correctly removes the obviously bad RRI values con-
tained within those heart beat events. Intervals of long in-
activity are expected, since they easily arise from simple
problems in the measuring procedure and removing a few
good heartbeats from the measurement is a good trade-off
for removing bad RRI values.

5) Automatic threshold detection
The proposed beat-detection algorithm has only one pa-

rameter to tune - the threshold for peak detection from the
signal derivative. Since the algorithm is used on very di-
verse measurements, the threshold should be defined per
measurement. To aid the human operator in selecting an
appropriate threshold value, the following approach is used.

Process is employing the previously defined steps. Sig-
nal is filtered with the low pass filter of 50Hz, and the filter
output is derived. Then the program tries to determine the
best value of the threshold for the given derived filter output
in a loop over a predefined set of candidate values. From
experiences gathered by analysing such signals manually,
lower bound for candidate values is defined as 1000, and
upper as 15500, the values up to 2000 increment by 250,
later by 500. For every candidate value, the amplitude anal-
ysis and extreme values removal are performed, followed by
calculation of statistics. Statistics are gathered from beats:
total number of beats, mean heart rate and standard devia-
tion of heart rate.

To accelerate compute times and disregard thresholds
that cause the algorithm to find no useful data, computation
may stop before reaching the upper bound. When the algo-
rithm detects a very low average heart rate using a certain
candidate value for threshold – 15 beats per minute or less
– it searches no further, since higher thresholds only further
worsen the calculated statistics and higher values are thus
deemed invalid by the algorithm itself. The average heart
rate is calculated only from the correctly sampled data, with
missing samples disregarded.

After the statistics are gathered for all the candidate val-
ues in a loop, they are presented to the human operator. A
window is shown, with the statistics plotted on two graphs
(see Fig. 2 for an example), to help the operator choose the
best threshold value. The first graph shows the standard de-
viation and average heart beat rate, while the second graph
shows the number of heart beats detected.

The candidate value, which results in the lowest stan-
dard deviation in heart rate if used as the threshold, is of-
fered to the operator as the best candidate (see the vertical
lines on the graphs on Fig. 2). After the operator confirms
the selection of the threshold value, the detected beats are
converted into an event channel, to be displayed underneath
the input signal on screen, as seen on Fig. 3.

As can be seen from the added vertical lines on the fig-
ure, the detection of beats on the used ECG measurement
latched on the slope of Q wave. This is not the same for
all the measurements, the detection latches to the point of
highest absolute derivative, the point of which is generally

within the QRS complex but may vary within it, due to dif-
ferent possible placements of the differential electrodes on
the chest.

The automated approach works well for signals, where
the subject has normal heart rhythm most of the time, and
there is no constant noise of fixed frequency. For such cases,
the operator only clicks OK after reviewing the two graphs
of statistics.

Figure 2. Graph shown to user during beat detection

Figure 3. Result of beat detection.

6) Problems of automatic threshold detection
The operator should visually inspect the graphs, focus-

ing on the threshold values on and near to the proposed can-
didate value. The standard deviation around the proposed
value should be low and heart rate in appropriate bounds,
while the number of samples should not change drastically
around the proposed value. If these conditions are satisfied,
one click on the OK button accepts the threshold and shows
the beats on the graph (as seen on Fig. 3). However, some
heart beat anomalies can cause the analysis to show multi-
ple areas that satisfy those conditions. Fig. 4 is an example
where the analysis returned two areas that seem appropriate
for the threshold values. On the Fig. 4, the two mentioned
areas are encircled in yellow. This particular analysis oc-
curred on a measurement, where almost every second heart
beat was irregular and produced very high peaks in the sig-
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nal derivative. While the analysis did suggest the value in
the proper area in this case, it could also very easily been
wrong and suggested a value from the other area. This is
why the human operator is included into the algorithm, with
the possibility to visually analyse the statistics, to override
the suggested threshold and even to repeat the whole beat-
detection if the beats are later found to be miss-identified
too frequently. The results of the correct threshold selec-
tion for this case are shown on Fig. 5.

C. Visual analysis
The presented algorithm is relatively robust, fast, and

has good enough accuracy to help the physicians make a
basic overview over the collected measurement.

One of the usual methodologies of further ECG anal-
ysis is visual inspection of heart rhythm and visualization
of problematic sections. Problematic sections are sections
of ECG, where rapid change in heart rhythm is seen or a
pattern in the heart rhythm changes. An example of whole
measurement visualization can be seen on Fig. 6 and of a
visualization of a small problematic section on Fig. 7).

Visualisation of the whole measurement provides a
global overview of subject’s activity and heart rhythm. Sev-
eral observations can be made from the visual analysis of
the measurement overview (Fig. 6).

Figure 4. Case of a graph with abnormal heart beat

Figure 5. Result of beat detection on abnormal signal

• At the beginning (from 20 to 500 seconds in the mea-
surement), there were no samples gathered. This is an
example of gadget losing a connection. During that
time there is a flat line in the signal (represented with
red line) and no events (blue crosses) are detected.

• Following that period the subject had an unsteady
heart rate (area between 500 and 1000 seconds on x
axis).

• A steady heart rhythm follows (area between 1000
and 2500 seconds on the x axis). Dispersed events
around the relatively steady line indicate irregular
heart beats. This is one of the possible indices of
problematic areas, allowing the human operator to
detect such areas quickly and focus on them.

• On the gathered sample measurement, the subject
was involved in a sports activity that periodically
raised his heartbeat. This period can be seen quite
clearly on the RRI events channel from 3000 seconds
to the end of the measurement. Within this periodic
activity, there are also numerous outliers in the heart
beat events. Those occur mostly in the areas of higher
RRI (lower heart rate). Again, these are the areas
where the operator should focus on.

Focusing on a smaller area, the signal can be visually
inspected in more detail, visualising individual transition in
RRI values. Shown on Fig. 7 is a sample of detected transi-
tion from irregular to regular heart rhythm. Human operator
can inspect such transitions and classify irregularities that
are present in the measurement.

Figure 6. Three hour measurement overview.

Figure 7. Visual indication of change in heartbeat rhythm.

III. RESULTS

The proposed algorithm was tested on the ECG samples
from the PhysioNet’s MIT-BIH Arrhythmia Database [3],
using MLII channel of each measurement. The detected
heart beats were compared to the heart beats annotations
from the database. The tests started with the signal being
imported into the NevroEkg program where an automatic
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beat detection was executed (using the threshold value sug-
gested by the algorithm). The resulting RRI event chan-
nel was then compared to the beat annotations given by the
database. Only the annotations that represent QRS complex
were used and all other annotations were disregarded.

The results are presented in Tab. 1, which contains true
positive values (tp; correctly detected beats), false positives
(fp; falsely detected beats) and false negatives (fn; beats
that were not detected). The table are contains the calcu-
lated values for precision, defined as tp/(tp + fp), and re-
call, defined as tp/(tp + fn). The values of precision and
recall that are lower than 90% are coloured red in the table.

On the whole database, the execution of the algorithm
produced 97.7% precision and 98.9% recall. By design,
the presented algorithm always discards the first heartbeat
after a long period without detected beats, since its previ-
ous heartbeat is not measured and the RRI cannot be de-
termined. Therefore the 100% recall is rarely achievable
on arrhythmic measurements. Closer inspection of the ta-
ble reveals that the variation in results is quite high. There
are only three measurements that have precision or recall
lower than 95% though, and out of these, the measurement
numbered 219 is the worst with precision only 51.2%.

In measurements numbered 108 and 207, the signal to
noise ration was the highest. A relatively high threshold
was proposed by the algorithm for those two measurements,
which helped reduce the number of false positives in beat
identification but also caused a lot of false negatives. Pre-
cision therefore was high, while recall was low. Measure-
ments 207 also contains periods of ventricular fluttering[8].
Algorithm has not been adapted to cope with such extreme
events, and does not distinguish them from noise. In cases
with such low recall, the operator should be able to notice
the unidentified beats and manually annotate them after a
close review of the signal.

To see weather the threshold values could be set more
optimally than the one suggested by the algorithm, the mea-
surements numbered 108, 207, and 219 were processed
again with human operator in loop. In Tab. 2 the thresh-
old values were manually adjusted until the results were
the most satisfactory for the human operator. Detection
on measurement numbered 106 shows large improvement,
with both precision and recall rising over 90%. Measure-
ment numbered 207, however, includes too many extreme
events, such as the previously mentioned ventricular flut-
tering. Lowering the threshold value manually did improve
recall but for the cost of the reduced precision.

In measurement numbered 219, the algorithm with au-
tomatically determined threshold latched on both R and the
extraordinarily high P waves. Manually setting the thresh-
old lower on this measurement improved precision to 98.3%
while recall remained the same, as shown in Tab. 2.

Even without exclusion of record 207, results are com-
parable to known robust detectors [7, 9, 10], that are also
able to detect beats with both precision and recall in 85-
99% range.

TABLE 1. RESULTS OF AUTOMATIC BEAT DETECTION ON MIT-BIH
ARRHYTHMIA DATABASE

File tp fp fn Precision
[%]

Recall
[%]

100 2272 0 1 100.000 99.956
101 1862 5 3 99.732 99.839
102 2180 6 7 99.726 99.680
103 2083 0 1 100.000 99.952
104 2213 37 16 98.356 99.282
105 2551 58 21 97.777 99.184
106 2018 3 9 99.852 99.556
107 2132 3 5 99.859 99.766
108 1227 0 536 100.000 69.597
109 2530 2 2 99.921 99.921
111 2122 0 2 100.000 99.906
112 2538 0 1 100.000 99.961
113 1793 0 2 100.000 99.889
114 1878 4 1 99.787 99.947
115 1953 0 0 100.000 100.000
116 2390 2 22 99.916 99.088
117 1534 0 1 100.000 99.935
118 2277 5 1 99.781 99.956
119 1987 3 0 99.849 100.000
121 1860 3 3 99.839 99.839
122 2475 1 1 99.960 99.960
123 1517 0 1 100.000 99.934
124 1618 0 1 100.000 99.938
200 2596 28 5 98.933 99.808
201 1953 2 10 99.898 99.491
202 2134 1 2 99.953 99.906
203 2921 145 59 95.271 98.020
205 2640 0 16 100.000 99.398
207 2035 51 297 97.555 87.264
208 2917 7 38 99.761 98.714
209 3004 3 1 99.900 99.967
210 2638 24 12 99.098 99.547
212 2747 0 1 100.000 99.964
213 3249 1 2 99.969 99.938
214 2255 5 7 99.779 99.691
215 3362 1 1 99.970 99.970
217 2199 2 9 99.909 99.592
219 2151 2052 3 51.178 99.861
220 2047 0 1 100.000 99.951
221 2427 0 0 100.000 100.000
222 2478 5 5 99.799 99.799
223 2600 0 5 100.000 99.808
228 2028 48 25 97.688 98.782
230 2255 3 1 99.867 99.956
231 1570 0 1 100.000 99.936
232 1701 6 79 99.649 95.562
233 3074 1 5 99.967 99.838
234 2752 0 1 100.000 99.964∑

108743 2517 1223 97.738 98.888
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TABLE 2. TABLE OF RESULTS FROM MIT-BIH ARRHYTHMIA
DATABASE, WITH MANUAL THRESHOLD CORRECTION

File tp fp fn Precision
[%]

Recall
[%]

108 1654 55 109 96.782 93.817
207 2098 137 234 93.870 89.966
219 2151 37 3 98.309 99.861

IV. CONCLUSION

During the development of the proposed algorithm, in-
put from multiple areas of expertise was considered. Most
of the focus was gathered in the area of enabling quick vi-
sual analysis of the signal.

The gathered low resolution noisy samples with miss-
ing data have been successfully handled with the pro-
posed semi-automatic algorithm. The algorithm and man-
ual work-flow do require some practice for the human op-
erator to perfect, but are easily understood and can be used
after a short introduction. Operators have confirmed that
such presentation and the proposed algorithm are sufficient
for general overview of long measurements.

The goals of reducing human operator workload, and
speeding up and simplifying the process were fulfilled, even
though further improvements are still possible. There is
no standardized method of processing long and noisy ECG
measurements yet.

While awaiting further feedback from human operators
that are testing the program, some areas of the process
are already recognized as improvable. For example, some
speed up of the process could be achieved by using paral-
lel processing on the signals. Post-processing of the result
would benefit from improved accuracy and could also ex-
pand by adding beat classification. Building upon the im-

proved post-processing, the detected problematic areas or
individual beats could also be reported to the human oper-
ator in a concise manner, accompanied by written explana-
tion.
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[2] A. Rashkovska, I. Tomašić, R. Trobec. A telemedicine application : ECG
data from wireless body sensors on a smartphone. In proceedings of: MIPRO
2011, 34th International Convention, May 23 - 27, 2011, Opatija, Croatia. P.
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